|
Moldflow计算翘曲时采用的In-Cavity Residual Stress指的是假设产品产品一直冷却到室温才脱模时形成的总残余应力。脱模后,由于内应力的作用,制件就会收缩;如果内应力分布不均,制件将发生翘曲变形。翘曲的产生并不意味着内应力的消失,而是指制件内部不同位置的应力分布达到了一种平衡状态。随着外界条件(温度、腐蚀等)的变化,翘曲将发生变化,制件将达到一种新的应力平衡状态。 Moldflow的翘曲计算法则:这里采用adao的观点,MID和Fusion计算翘曲是采用残余应力的理论模型,由于理论应力往往和真实应力有差距,Moldflow采用CRIMS,也就是实际收缩的校正,改善翘曲量甚至趋势。 3D计算翘曲的模式采用的是CTE热膨胀系数来计算应变获得最终的翘曲变形,所以要使3D翘曲准确,CTE必须准确。在线性模式下,应力和应变是一一对应关系的,也就是说3D的应变计算出来也就是应力也计算出来了。Moldflow 3D实际上是有Stress结果的,比如双折射就是用3D应力结果。 对此,我有一个疑问: 3D模型根据CTE计算翘曲变形,而收缩不均、冷却不均以及分子取向是翘曲变形的诱因。我觉得材料的CTE特性只对体积收缩量的计算有意义。因此,3D模型的翘曲计算只能体现收缩不均这一项。而且,体积收缩与翘曲变形的关系很模糊,Moldflow是如何根据体积收缩推导出翘曲变形的呢?
首先,Moldflow先计算冷却到室温而制品不收缩变形的应力,这是合理的,因为产品脱模后还要冷却,当然还要收缩。由于应力和应变本身在线性范围内是对等关系,所以先折算为应力在理论上是正确的。 In-Cavity Residual Stress实际意义当然也有,它也和最终残余应力有对应关系(就和Shear Stress有对应关系一样),可以用来评估整体应力分布和水平,比如应力痕、开裂等。这涉及到Moldflow标准化应用的方法问题,请参考有关资料。
不管Moldflow如何分翘曲原因,归根结底还是收缩,翘曲的第一原因为Shrinkage指的就是体积收缩这与PVT以及结晶相关,只有量的分布;冷却原因指的是上下面的温差造成的收缩弯曲效应;而取向指的是收缩的方向,不改变实际体积收缩量,只改变在不同方向的线性收缩。
关于CRIMS的作用,是修正一些理论模型目前为止还不能解决的问题:
1、比如提到的应力松弛的问题; 2、分子取向的微观问题; 3、各种工艺条件敏感性问题,比如冷却快慢其PVT曲线是有差异的; 4、结晶性材料的微观结晶问题。这些问题用试验的数据予以校正是目前比较可行的方法,依据CRIMS的测试方法,样品是在7天之后比较稳定状态测试的,所以CRIMS可以考虑到后变形问题。
In-Cavity Residual Stress指的是假设产品产品一直冷却到室温才脱模时形成的总残余应力。但是它没考虑模芯对产品的约束作用吧? 在没开模前,产品的应力是不是会释放掉部分呢? 这难道就是CRIMS的作用吗?
线性收缩有三个垂直方向,典型是壁厚方向和平面方向,其大小一般为体积收缩的1/3。 取向改变的是收缩的形状,比如流动方向和垂直方向收缩大小不一样(合成的体积收缩不变),也会发生形状的改变,从而翘曲发生。体积收缩原因指的是各区域体积收缩的一致性,主要参考“脱模时的体积收缩”,而取向指的是本区域收缩各方向不一致问题
|
|